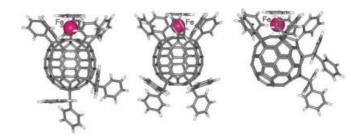
SPOTLIGHTS ...


Fullerene Complexes

Y. Matsuo, T. Fujita, E. Nakamura*

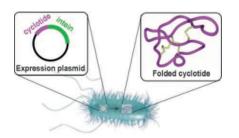
Hoop-Shaped Condensed Aromatic Systems: Synthesis and Structure of Iron— and Ruthenium—;Hepta-(organo)[60]fullerene Complexes

Chem. Asian J.

DOI: 10.1002/asia.200700124

We don't just do balls: Hoop- and bowl-shaped aromatic systems can be synthesized by reductive alkylation of buckyferrocene and ruthenocene with

metallic potassium. Physical methods such as X-ray crystallography reveal the structures of these iron— and ruthenium—hepta(organo)[60]fullerenes.


Cyclotide Biosynthesis

J. A. Camarero,* R. H. Kimura, Y.-H. Woo, A. Shekhtman, J. Cantor

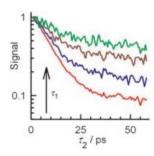
Biosynthesis of a Fully Functional Cyclotide inside Living Bacterial Cells

ChemBioChem

DOI: 10.1002/cbic.200700183

Perfect circle. We report the biosynthesis of a natively folded cyclotide, MCoTI-II, in *E. coli* by intracellular backbone cyclization of a linear cyclotide–intein fusion precursor. The cyclized peptide then spontaneously folds into its native conformation. Biosynthetic access to correctly folded cyclotides allows the possibility of generating cell-based combinatorial libraries that can be screened, inside living cells, for their ability to modulate or inhibit cellular processes.

Ultrafast Spectroscopy


E. van Veldhoven, C. Khurmi, X. Zhang, M. A. Berg*

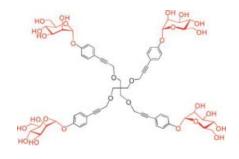
Time-Resolved Optical Spectroscopy with Multiple Population Dimensions: A General Method for Resolving Dynamic Heterogeneity

ChemPhysChem

DOI: 10.1002/cphc.200700088

Dynamic heterogeneity: A new type of multidimensional experiment is demonstrated that distinguishes between heterogeneous and homogeneous causes of nonexponential relaxation. By varying the duration of an initial time period τ_1 , fast-relaxing molecules are removed from the decay during a second period τ_2 (see figure).

SAR of SERMs

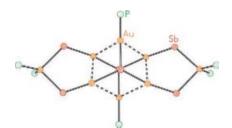

M. Touaibia, A. Wellens, T. C. Shiao, Q. Wang, S. Sirois, J. Bouckaert,*

R. Roy*

Mannosylated G(0) Dendrimers with Nanomolar Affinities to *Escherichia* coli FimH

ChemMedChem

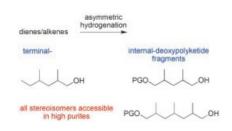
DOI: 10.1002/cmdc.200700063



Mannosylated dendrimers: Pentaery-thritol and bis-pentaerythritol scaffolds were used for the preparation of first generation glycodendrimers bearing aryl α-D-mannopyranoside residues assembled using Sonogashira and click chemistry. Surface Plasmon Resonance measurements showed these two mannosylated clusters as the best ligands known towards FimH from *Escherichia coli* at subnanomolar concentrations.

... ON OUR SISTER JOURNALS

The synthesis and structural characterization of the gold antimony complex [Au₈(SbPh)₂(SbPh₂)₄(PEt₃)₆] is reported. The Au^I ions show weak aurophilic interactions and are bridged by [SbPh]²⁻ and [SbPh₂]⁻ anions.



Bridging Antimony Ligands

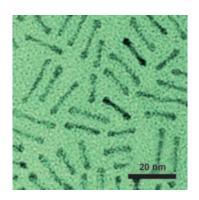
D. Fenske,* A. Rothenberger, S. Wieber

Synthesis and Characterization of a Gold Complex Containing [SbPh]²⁻ and [SbPh₂]⁻ Anions as Bridging Ligands

Eur. J. Inorg. Chem. DOI: 10.1002/ejic.200700541

Interplay of catalyst and substrate vectors allow application of asymmetric hydrogenations to facilitate formation of terminal- and internal-deoxypolyketide chirons (see scheme). Two of the tools used to achieve this were: DFT calculations to understand the abnormal mechanism for hydrogenation of α,β -unsaturated esters and double asymmetric syntheses (Horeau's principle) in reduction of dienes.

Asymmetric Catalysis


J. Zhou, J. W. Ogle, Y. Fan, V. Banphavichit(Bee), Y. Zhu, K. Burgess*

Asymmetric Hydrogenation Routes to Deoxypolyketide Chirons

Chem. Eur. J.

DOI: 10.1002/chem.200700390

Length made to order: Controlled reduction of [Pt(acac)₂] and decomposition of [Fe(CO)₅] in a mixture of oleylamine and octadecene leads to the facile synthesis of FePt nanowires and nanorods with diameters of 2–3 nm (see TEM image). The length of the nanowires/nanorods is tunable from greater than 200 nm down to 20 nm by simply controlling the volume ratio of oleylamine and octadecene.

Nanostructure Growth

C. Wang, Y. Hou,* J. Kim, S. Sun*

A General Strategy for Synthesizing FePt Nanowires and Nanorods

Angew. Chem. Int. Ed. DOI: 10.1002/anie.200702001

On these pages, we feature a selection of the excellent work that has recently been published in our sister journals. If you are reading these pages on a computer, click on any of

the items to read the full article. Otherwise please see the DOIs for easy online access through Wiley InterScience.